
IFT3335 Lecture 5: Adversarial Search and Games

Introduction to Artificial Intelligence

Bang Liu, Jian-Yun Nie

Certain Slides Adapted From or Referred To…

๏ Slides from UC Berkeley CS188, Dan Klein and Pieter Abbeel
• Game Trees I & II: https://inst.eecs.berkeley.edu/~cs188/su21/

๏ Slides from UPenn CIS391, Mitch Marcus
• 2-Player Games: Adversarial Search: https://www.seas.upenn.edu/~cis391/#LECTURES

๏ https://www.javatpoint.com/ai-alpha-beta-pruning

๏ https://int8.io/monte-carlo-tree-search-beginners-guide/

2

https://inst.eecs.berkeley.edu/~cs188/su21/
https://www.seas.upenn.edu/~cis391/#LECTURES
https://www.javatpoint.com/ai-alpha-beta-pruning
https://int8.io/monte-carlo-tree-search-beginners-guide/

Plan3

๏ Game AI

๏ The MiniMax Rule

๏ Alpha-Beta Pruning

๏ Monte-Carlo Tree Search

๏ Search with Uncertainty

Game AI

AI for Checkers

๏ 1950: First computer player.

๏ 1994: First computer champion:
Chinook ended 40-year-reign of
human champion Marion Tinsley
using complete 8-piece endgame.

๏ 2007: Checkers was weakly solved in
2007 by a team of Canadian computer
scientists led by Jonathan Schaeffer.
From the standard starting position,
perfect play by each side would result
in a draw!

5

AI for Chess

๏ 1997: Deep Blue defeats human
champion Gary Kasparov in a six-
game match. Deep Blue examined
200M positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

๏ https://www.ibm.com/ibm/history/
ibm100/us/en/icons/deepblue/

6

https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/

AI for Go

๏ Go originated in China over 3,000 years ago. Winning this
board game requires multiple layers of strategic thinking.

๏ Two players, using either white or black stones, take turns
placing their stones on a board. The goal is to surround
and capture their opponent's stones or strategically create
spaces of territory. Once all possible moves have been
played, both the stones on the board and the empty points
are tallied. The highest number wins.

๏ As simple as the rules may seem, Go is profoundly
complex. There are an astonishing 10 to the power of 170
possible board configurations - more than the number
of atoms in the known universe. This makes the game of
Go a googol times more complex than chess.

๏ 2016: AlphaGO (created by DeepMind) defeats human
champion. Uses Monte Carlo Tree Search, learned
evaluation function. (More details later.)

7

https://deepmind.com/research/case-studies/alphago-the-story-so-far

https://deepmind.com/research/case-studies/alphago-the-story-so-far

More Games…

๏ Poker AI: Libratus (CMU, 2017), Pluribus (CMU, 2019), DeepStack (University of Alberta)…

๏ StarCraft AI: AlphaStar (DeepMind, 2019)

๏ Dotar 2 AI: OpenAI Five (OpenAI, 2018)

8

Types of Games

๏ Many different kinds of games!

๏ Axes:
• Deterministic or stochastic?
• One, two, or more players?
• Zero sum?
• Perfect information (can you see the

state)?

๏ Want algorithms for calculating a
strategy (policy) which recommends a
move from each state

9

Deterministic Games

๏ Deterministic v.s. nondeterministic
• Whether the next state of the environment is completely determined by the current state and

the action executed by the agent(s)

๏ Many possible formalizations, one is:

• States: S (start at)

• Players: P={1...N} (usually take turns)
• Actions: A (may depend on player / state)

• Transition Function: S A S

• Terminal Test: S {t,f}

• Terminal Utilities: S P R

๏ Solution for a player is a policy:

s0

× →
→

× →

S → A

10

Zero-Sum Games

๏ Zero-Sum Games
• Agents have opposite utilities (values on

outcomes)
• Lets us think of a single value that one

maximizes and the other minimizes
• Adversarial, pure competition

๏ General Games
• Agents have independent utilities

(values on outcomes)
• Cooperation, indifference, competition,

and more are all possible

11

Image created by Market Business News.

Adversarial Search

๏ Adversarial search is a search, where we
examine the problem which arises when we try
to plan ahead of the world and other agents are
planning against us.

๏ The environment with more than one agent is
termed as multi-agent environment. Each
agent needs to consider the action of other
agent and effect of that action on their
performance.

๏ So, Searches in which two or more players with
conflicting goals are trying to explore the same
search space for the solution, are called
adversarial searches, often known as Games

12

Game Tree13

A game tree is a tree where
nodes of the tree are the
game states and Edges of
the tree are the moves by
players.

The right figure is showing
part of the game-tree for
tic-tac-toe game. Following
are some key points of the
game:

• There are two players MAX

and MIN.

• Players have an alternate

turn and start with MAX.

• MAX maximizes the result

of the game tree

• MIN minimizes the result.

Tic-Tac-Toe Game Tree

The MiniMax Rule

Value of a State15

Minimax Values16

Minimax Algorithm

๏ Idea: Make the best move for MAX assuming that MIN always replies with the best move for
MIN

๏ Easily computed by a recursive process:
• The backed-up value (i.e., state value) of each node in the tree is determined by the values

of its children:

• For a MAX node, the backed-up value is the maximum of the value of its children (i.e., the
best for MAX)

• For a MIN node, the backed-up value is the minimum of the values of its children (i.e. the
best for MIN)

•

17

The Minimax Procedure18

CIS 391 - Intro to AI 5

The Minimax Procedure
Until game is over:

1. Start with the current position as a MAX node.

2. Expand the game tree a fixed number of ply.

3. Apply the evaluation function to the leaf positions.

4. Calculate back-up values bottom-up.

5. Pick the move assigned to MAX at the root

6. Wait for MIN to respond

2-ply Example: Backing up values19

Minimax Implementation20

Properties of Minimax Algorithm

๏ Complete: Minimax algorithm is complete. It will definitely find a solution (if exist), in the
finite search tree.

๏ Optimal: Minimax algorithm is optimal if both opponents are playing optimally.

๏ Time complexity: As it performs DFS for the game-tree, so the time complexity of Minimax
algorithm is , where b is branching factor of the game-tree, and m is the maximum depth
of the tree.

๏ Space complexity: Space complexity of Mini-max algorithm is also similar to DFS which is
O(bm).

O(bm)

21

What if MIN does not play optimally?

๏ Definition of optimal play for MAX assumes
MIN plays optimally:
• Maximizes worst-case outcome for MAX.
• (Classic game theoretic strategy)

๏ But if MIN does not play optimally, what
will happen?

22

What if MIN does not play optimally?

๏ MAX will do even better.

๏ Consider a MIN node whose children are terminal
nodes. If MIN plays suboptimally, then the value of
the node is greater than or equal to the value it would
have if MIN played optimally. Hence, the value of
the MAX node that is the MIN node’s parent can
only be increased.

๏ This argument can be extended by a simple induction
all the way to the root.

๏ If the suboptimal play by MIN is predictable, then
one can do better than a minimax strategy. For
example, if MIN always falls for a certain kind of
trap and loses, then setting the trap guarantees a win
even if there is actually a devastating response for
MIN.

23

What if MIN does not play optimally?

๏ Is it always best to play the minimax
optimal move when facing a suboptimal
opponent?

24

What if MIN does not play optimally?

๏ Is it always best to play the minimax
optimal move when facing a suboptimal
opponent? NO

๏ Consider a situation where optimal play by
both sides will lead to a draw, but there is one
risky move for MAX that leads to a state in
which there are 10 possible response moves
by MIN that all seem reasonable, but 9 of
them are a loss for MIN and one is a loss for
MAX.

๏ If MAX believes that MIN does not have
sufficient computational power to discover the
optimal move, MAX might want to try the
risky move, on the grounds that a 9/10 chance
of a win is better than a certain draw.

25

Comments on Minimax Search

๏ Performance will depend on
• the quality of the static evaluation function (expert knowledge)
• depth of search (computing power and search algorithm)

๏ Differences from normal state space search
• Looking to make one move only, despite deeper search
• No cost on arcs – costs from backed-up static evaluation
• MAX can’t be sure how MIN will respond to his moves

๏ Minimax forms the basis for other game tree search algorithms.

26

Alpha-Beta Pruning

Resource Limits

๏ Problem: In realistic games, cannot search to leaves!

28

Game Tree Pruning29

Alpha-Beta Pruning

๏ A way to improve the performance of the Minimax Procedure

๏ Basic idea: “If you have an idea which is surely bad, don’t take the time to see how truly
awful it is” ~ Pat Winston

30

Alpha-Beta Pruning

๏ During Minimax, keep track of two additional values:
• α: MAX’s current lower bound on MAX’s outcome
• β: MIN’s current upper bound on MIN’s outcome

๏ MAX will never allow a move that could lead to a worse score (for MAX) than α

๏ MIN will never allow a move that could lead to a better score (for MAX) than β

๏ Therefore, stop evaluating a branch whenever:
• When evaluating a MAX node: a value v ≥ β is backed-up

— MIN will never select that MAX node
• When evaluating a MIN node: a value v ≤ α is found

— MAX will never select that MIN node

31

Alpha-Beta Pruning

๏ Based on observation that for all viable paths utility value f(n) will be α <= f(n) <= β

๏ Initially, α = - , β=

๏ As the search tree is traversed, the possible utility value window shrinks as α increases, β
decreases

๏ Whenever the current ranges of alpha and beta no longer overlap, it is clear that the current
node is a dead end

∞ ∞

32

When to Prune

Prune whenever α >= β.

๏ Prune below a Max node when its value becomes ≥ the value of its ancestors.

• — Max nodes update based on children’s returned values.
• — Idea: Player MIN at node above won’t pick that value anyway, he can force a worse value.

๏ Prune below a Min node when its value becomes ≤ the value of its ancestors.

• — Min nodes update based on children’s returned values.
• — Idea: Player MAX at node above won’t pick that value anyway; she can do better.

α β
α

β α
β

33

Example

๏ Max player will start first move from node A where α= -∞ and β= +∞, these value of alpha and
beta passed down from A to B, then B to D.

34

Example

๏ At Node D, the value of α will be calculated as its turn for Max: max (2, 3) = 3 will be the value of α at
node D and node value will also 3. Now algorithm backtrack to node B, where the value of β will change
as this is a turn of Min: β= min (∞, 3) = 3, hence at node B, α= -∞ and β= 3.

๏ In the next step, algorithm traverse the next successor of Node B which is node E, and the values of α=
-∞, and β= 3 will also be passed.

35

Example

๏ At node E, Max will take its turn: α= max (-∞, 5) = 5, hence at node E α= 5 and β= 3, where
α>=β, so the right successor of E will be pruned, and algorithm will not traverse it, and the
value at node E will be 5.

36

๏ Next step, algorithm backtrack the tree, from node B to node A. At node A: α=max (-∞, 3)= 3,
β= +∞; then pass to Node C. At node C, α=3 and β= +∞, then passed to node F. At node F:
compare to left and right child, α remains 3. The node value of F will become 1.

Example37

๏ Node F returns the node value 1 to node C, at C α= 3 and β= +∞, here the value of beta will be
changed, it will compare with 1 so min (∞, 1) = 1. Now at C, α=3 and β= 1, α>=β, so the next
child of C which is G will be pruned. The algorithm will not compute the entire sub-tree G.

Example38

๏ C now returns the value of 1 to A. The best value for A is max(3, 1) = 3. Hence the optimal
value for the maximizer is 3 for this example.

Example39

Alpha-Beta Implementation40

Move Ordering in Alpha-Beta pruning

๏ The effectiveness of alpha-beta pruning is highly dependent on the order in which each node is
examined.

๏ Worst ordering:
• In some cases, alpha-beta pruning algorithm does not prune any of the leaves of the tree, and

works exactly as minimax algorithm.
• In this case, the best move occurs on the right side of the tree. The time complexity for such an

order is .

๏ Ideal ordering:
• The ideal ordering for alpha-beta pruning occurs when best moves occur at the left side of the

tree.
• We apply DFS hence it first search left of the tree and go deep twice as minimax algorithm in

the same amount of time. Complexity in ideal ordering is (Best-Case Analysis of Alpha-
Beta Pruning).

O(bm)

O(bm
2)

41

http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf
http://www.cs.utsa.edu/~bylander/cs5233/a-b-analysis.pdf

Test Example…42
Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

CIS 391 - Intro to AI 38

Test Example…43
Answer to Example

-which nodes can be pruned?

Answer: NONE! Because the most favorable nodes for both are
explored last (i.e., in the diagram, are on the right-hand side).

3 4 1 2 7 8 5 6

Max

Min

Max

39

Test Example 2…44
Second Example
(the exact mirror image of the first
example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?

40

Test Example 2…45
Answer to Second Example
(the exact mirror image of the first
example) -which nodes can be pruned?

6 5 8 7 2 1 3 4

Min

Max

Max

Answer: LOTS! Because the most favorable nodes for both are
explored first (i.e., in the diagram, are on the left-hand side).

41

Resource Limits

๏ Problem: In realistic games, cannot search to leaves!

๏ Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for

non-terminal positions

๏ Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move

• reaches about depth 8 – decent chess program

๏ Guarantee of optimal play is gone

๏ More plies makes a BIG difference

๏ Use iterative deepening for an anytime algorithm

α-β

46

Applications

๏ Deep Blue
• Evaluate positions using features handcrafted by human grandmasters and carefully tuned

weights
• Combined with a high-performance alpha-beta search that expands a vast search tree using a

large number of clever heuristics and domain-specific adaptations.
• Uses a parallel array of 256 special chess-specific processors
• Evaluates 200 billion moves every 3 minutes; 12-ply search depth
• 8000 factor evaluation function tuned from hundreds of thousands of grandmaster games
• Tends to play for tiny positional advantages.

๏ Chinook
• The World Man-Made Checkers Champion, developed at the University of Alberta.
• Competed in human tournaments, earning the right to play for the human world

championship, and defeated the best players in the world.

47

Monte-Carlo Tree Search

The Game of Go

๏ For quite a long time, a common opinion in academic world
was that machine achieving human master performance
level in the game of Go was far from realistic.

๏ It was considered a ‘holy grail’ of AI – a milestone we were
quite far away from reaching within upcoming decade.

๏ Surprisingly, in march 2016 an algorithm invented by
Google DeepMind called Alpha Go defeated Korean world
champion in Go 4-1 proving fictional and real-life skeptics
wrong.

๏ Around a year after that, Alpha Go Zero – the next
generation of Alpha Go Lee (the one beating Korean
master) – was reported to destroy its predecessor 100-0,
being very doubtfully reachable for humans.

49

AlphaGo

๏ 2016: AlphaGO (created by DeepMind) defeats human champion. Uses Monte Carlo Tree
Search, learned evaluation function.

50

https://www.alphagomovie.com/

https://www.alphagomovie.com/

51

AlphaZero, MuZero, and More…52

MuZero: Mastering Go, chess, shogi and Atari without rules

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

Alpha Go/Zero

๏ Alpha Go/Zero system is a mix of several methods assembled into one great engineering piece
of work. The core components of the Alpha Go/Zero are:
• Monte Carlo Tree Search (certain variant with PUCT function for tree traversal)
• Residual Convolutional Neural Networks – policy and value network(s) used for game

evaluation and move prior probability estimation
• Reinforcement learning used for training the network(s) via self-plays

๏ Here we will focus on Monte Carlo Tree Search only.

53

Monte Carlo Tree Search

๏ Monte Carlo Tree Search was introduced by Rémi Coulom in 2006 as a building block
of Crazy Stone – Go playing engine with an impressive performance.

๏ From a helicopter view Monte Carlo Tree Search has one main purpose: given a game state to
choose the most promising next move.

54

https://hal.inria.fr/inria-00116992/document
https://en.wikipedia.org/wiki/Crazy_Stone_(software)
https://en.wikipedia.org/wiki/Crazy_Stone_(software)#Performance

Monte Carlo Tree Search

1. Selection
Start from root R and select successive child nodes until a leaf node L is reached. The root is the current
game state and a leaf is any node that has a potential child from which no simulation (playout) has yet
been initiated.

2. Expansion
Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or more) child
nodes and choose node C from one of them. Child nodes are any valid moves from the game position
defined by L.

3. Simulation
Complete one random playout from node C. This step is sometimes also called playout or rollout. A
playout may be as simple as choosing uniform random moves until the game is decided (for example in
chess, the game is won, lost, or drawn).

4. Backpropagation
Use the result of the playout to update information in the nodes on the path from C to R.

55

Monte Carlo Tree Search56

Choosing the Most Promising Move: Monte Carlo

๏ In Monte Carlo Tree Search algorithm, the most promising
move is computed in a sightly different fashion.

๏ As the name suggests (especially its monte-carlo component) –
Monte Carlo Tree Search simulates the games many times and
tries to predict the most promising move based on the simulation
results.

• Monte Carlo method:
• A broad class of computational algorithms that rely on

repeated random sampling to obtain numerical results.
• The underlying concept is to use randomness to solve

problems that might be deterministic in principle.

57

Monte Carlo method applied to
approximating the value of π.

Simulation / Playout58

Fully expanded and visited nodes

๏ Node is considered visited if a playout has been started in that node – meaning it has been
evaluated at least once.

๏ If all children nodes of a node are visited node is considered fully expanded, otherwise – well
– it is not fully expanded and further expansion is possible.

๏ nodes chosen by rollout policy function during simulation are not considered visited.

59

Backpropagation

๏ Once simulation for a freshly visited node (sometimes called a leaf) is finished, its result
is ready to be propagated back up to the current game tree root node. The node where
simulation started is marked visited.

๏ For every node on the backpropagation path certain statistics are computed/updated

60

Node’s Statistics

๏ Back-propagating updates the total simulation
reward Q(v) and total number of visits N(v)
for all nodes v on backpropagation path:

• Q(v) – Total simulation reward, e.g., sum of
simulation results that passed through
considered node.

• N(v) – Total number of visits, i.e., how
many times a node has been on the
backpropagation path

๏ Nodes with high reward are good candidates to
follow (exploitation) but those with low
amount of visits may be interesting too
(because they are not explored well)

61

Example62

Game Tree Traversal: Upper Confidence Bound

๏ How do we get from a root node to the unvisited node to start a simulation?

๏ Upper Confidence Bound applied to trees (UCT) is a function that lets us choose the next
node among visited nodes to traverse through – the core function of Monte Carlo Tree Search

63

ExplorationExploitation

Controls the trade-off
between exploitation
and exploration in
MCTS

UCT in Alpha Go and Alpha Zero64

Terminating Monte Carlo Tree Search

๏ When do we actually end the MCTS procedure?
• It depends on the context. If you build a game engine then your “thinking time” is probably

limited, plus your computational capacity has its boundaries, too. Therefore the safest bet is to
run MCTS routine as long as your resources let you.

๏ The general idea of simulating moves into the future, observing the outcome, and using the
outcome to determine which moves are good ones is one kind of reinforcement learning (we
will cover in the future lectures).

65

Search with Uncertainty

Stochastic Games

๏ What if we don’t know what the result of an action will be? E.g.,
• In solitaire, shuffle is unknown

• In minesweeper, mine locations

67

Worst Case vs. Average Case68

Expectimax Search

๏ Values should now reflect average-case (expectimax) outcomes,
not worst-case (minimax) outcomes

๏ Expectimax search: compute the average score under optimal
play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

๏ Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

69

Reminder: Probabilities

๏ A random variable represents an event whose outcome is unknown

๏ A probability distribution is an assignment of weights to outcomes

๏ Example: Traffic on freeway
• Random variable: T = whether there’s traffic
• Outcomes: T in {none, light, heavy}
• Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

๏ Some laws of probability (more later):
• Probabilities are always non-negative
• Probabilities over all possible outcomes sum to one

๏ As we get more evidence, probabilities may change:
• P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60

70

Reminder: Expectations

๏ The expected value of a function of a random variable is the average, weighted by the
probability distribution over outcomes

๏ Example: How long to get to the airport?

71

Expectimax Pseudocode72

Expectimax Pseudocode73

Expectimax Pruning?74

Depth-Limited Expectimax75

Expectimax Search

๏ In expectimax search, we have a probabilistic model of how
the opponent (or environment) will behave in any state
• Model could be a simple uniform distribution (roll a die)
• Model could be sophisticated and require a great deal of

computation
• We have a chance node for any outcome out of our control:

opponent or environment
• The model might say that adversarial actions are likely!

๏ For now, assume each chance node magically comes along
with probabilities that specify the distribution over its
outcomes

76

Having a probabilistic belief about
another agent’s action does not
mean that the agent is flipping any
coins!

The Dangers of Optimism and Pessimism77

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely

Stochastic Single-Player: Pacman

๏ Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s
score

๏ Instead, they are now a part of the environment

๏ Pacman has a belief (distribution) over how they will act

๏ Quiz: Can we see minimax as a special case of expectimax?

๏ Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-
ply minimax and taking the result 80% of the time, otherwise moving randomly?

78

Expectimax for Pacman79

Stochastic Two-Player: Backgammon80

๏ The goal of the game is to move all one’s pieces
off the board.
• Black moves clockwise toward 25, and White

moves counterclockwise toward 0.
• A piece can move to any position unless

multiple opponent pieces are there; if there is
one opponent, it is captured and must start
over.

๏ In the position shown, Black has rolled 6–5 and
must choose among four legal moves: (5–11,5–
10), (5–11,19–24), (5–10,10–16), and (5–11,11–
16), where the notation (5–11,11–16) means
move one piece from position 5 to 11, and then
move a piece from 11 to 16.

Example: Backgammon81

At this point Black knows
what moves can be made,
but does not know what
White is going to roll and thus
does not know what White’s
legal moves will be. That
means Black cannot
construct a standard game
tree of the sort we saw in
chess and tic-tac-toe. A game
tree in backgammon must
include chance nodes in
addition to MAX and MIN
nodes. Chance nodes are
shown as circles in Figure

Mixed Layer Types

๏ Expectiminimax
• Environment is an extra

“random agent” player that
moves after each min/max
agent

• Each node computes the
appropriate combination of
its children

82

Multi-player Non-Zero-Sum Games

๏ What if the game is not zero-sum, or has
multiple players?

๏ Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own

component
• Can give rise to cooperation and

competition dynamically…

83

Utilities

๏ Utilities are functions from outcomes (states of the world) to real numbers that describe
an agent’s preferences

๏ Where do utilities come from?
• In a game, may be simple (+1/-1)
• Utilities summarize the agent’s goals
• Theorem: any “rational” preferences can be summarized as a utility function

๏ We hard-wire utilities and let behaviors emerge
• Why don’t we let agents pick utilities?
• Why don’t we prescribe behaviors?

84

Maximum Expected Utilities

๏ Why should we average utilities? Why not minimax?

๏ Principle of maximum expected utility:
• A rational agent should chose the action that

maximizes its expected utility, given its knowledge

85

What Utilities to Use?

๏ For worst-case minimax reasoning, terminal function scale doesn’t matter
• We just want better states to have higher evaluations (get the ordering right)
• We call this insensitivity to monotonic transformations

๏ For average-case expectimax reasoning, we need magnitudes to be meaningful (we’ll talk more about
utilities in the future)

86

Summary

๏ In two-player, discrete, deterministic, turn-taking zero-sum games with perfect information, the minimax
algorithm can select optimal moves by a depth-first enumeration of the game tree.

๏ The alpha–beta search algorithm computes the same optimal move as minimax, but achieves much
greater efficiency by eliminating subtrees that are provably irrelevant.

๏ Usually, it is not feasible to consider the whole game tree (even with alpha–beta), so we need to cut the
search off at some point and apply a heuristic evaluation function that estimates the utility of a state.

๏ An alternative called Monte Carlo tree search (MCTS) evaluates states not by applying a heuristic
function, but by playing out the game all the way to the end and using the rules of the game to see who
won. Since the moves chosen during the playout may not have been optimal moves, the process is
repeated multiple times and the evaluation is an average of the results.

๏ Games of chance can be handled by expectiminimax, an extension to the minimax algorithm that
evaluates a chance node by taking the average utility of all its children, weighted by the probability of
each child.

87

Thanks! Q&A

88

