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Certain Slides Adapted From or Referred To…

๏ Slides from UC Berkeley CS188, Dan Klein and Pieter Abbeel 
• Game Trees I & II: https://inst.eecs.berkeley.edu/~cs188/su21/ 

๏ Slides from UPenn CIS391, Mitch Marcus 
• 2-Player Games: Adversarial Search: https://www.seas.upenn.edu/~cis391/#LECTURES 

๏ https://www.javatpoint.com/ai-alpha-beta-pruning 

๏ https://int8.io/monte-carlo-tree-search-beginners-guide/
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๏ Game AI 

๏ The MiniMax Rule 

๏ Alpha-Beta Pruning 

๏ Monte-Carlo Tree Search 

๏ Search with Uncertainty



Game AI



AI for Checkers

๏ 1950: First computer player.  

๏ 1994: First computer champion: 
Chinook ended 40-year-reign of 
human champion Marion Tinsley 
using complete 8-piece endgame.  

๏ 2007: Checkers was weakly solved in 
2007 by a team of Canadian computer 
scientists led by Jonathan Schaeffer. 
From the standard starting position, 
perfect play by each side would result 
in a draw!
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AI for Chess

๏ 1997: Deep Blue defeats human 
champion Gary Kasparov in a six-
game match. Deep Blue examined 
200M positions per second, used very 
sophisticated evaluation and 
undisclosed methods for extending 
some lines of search up to 40 ply. 
Current programs are even better, if 
less historic. 

๏ https://www.ibm.com/ibm/history/
ibm100/us/en/icons/deepblue/
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AI for Go

๏ Go originated in China over 3,000 years ago. Winning this 
board game requires multiple layers of strategic thinking. 

๏ Two players, using either white or black stones, take turns 
placing their stones on a board. The goal is to surround 
and capture their opponent's stones or strategically create 
spaces of territory. Once all possible moves have been 
played, both the stones on the board and the empty points 
are tallied. The highest number wins.  

๏ As simple as the rules may seem, Go is profoundly 
complex. There are an astonishing 10 to the power of 170 
possible board configurations - more than the number 
of atoms in the known universe. This makes the game of 
Go a googol times more complex than chess. 

๏ 2016: AlphaGO (created by DeepMind) defeats human 
champion. Uses Monte Carlo Tree Search, learned 
evaluation function. (More details later.)
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More Games…

๏ Poker AI: Libratus (CMU, 2017), Pluribus (CMU, 2019), DeepStack (University of Alberta)… 

๏ StarCraft AI: AlphaStar (DeepMind, 2019) 

๏ Dotar 2 AI: OpenAI Five (OpenAI, 2018)
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Types of Games

๏ Many different kinds of games! 

๏ Axes: 
• Deterministic or stochastic? 
• One, two, or more players? 
• Zero sum? 
• Perfect information (can you see the 

state)? 

๏ Want algorithms for calculating a 
strategy (policy) which recommends a 
move from each state
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Deterministic Games

๏ Deterministic v.s. nondeterministic 
• Whether the next state of the environment is completely determined by the current state and 

the action executed by the agent(s) 

๏ Many possible formalizations, one is: 

• States: S (start at ) 

• Players: P={1...N} (usually take turns) 
• Actions: A (may depend on player / state)  

• Transition Function: S  A  S 

• Terminal Test: S  {t,f} 

• Terminal Utilities: S  P  R 

๏ Solution for a player is a policy: 

s0

× →
→

× →

S → A
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Zero-Sum Games

๏ Zero-Sum Games 
• Agents have opposite utilities (values on 

outcomes) 
• Lets us think of a single value that one 

maximizes and the other minimizes 
• Adversarial, pure competition 

๏ General Games 
• Agents have independent utilities 

(values on outcomes) 
• Cooperation, indifference, competition, 

and more are all possible
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Adversarial Search

๏ Adversarial search is a search, where we 
examine the problem which arises when we try 
to plan ahead of the world and other agents are 
planning against us. 

๏ The environment with more than one agent is 
termed as multi-agent environment. Each 
agent needs to consider the action of other 
agent and effect of that action on their 
performance. 

๏ So, Searches in which two or more players with 
conflicting goals are trying to explore the same 
search space for the solution, are called 
adversarial searches, often known as Games
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Game Tree13

A game tree is a tree where 
nodes of the tree are the 
game states and Edges of 
the tree are the moves by 
players.


The right figure is showing 
part of the game-tree for 
tic-tac-toe game. Following 
are some key points of the 
game:

• There are two players MAX 

and MIN.

• Players have an alternate 

turn and start with MAX.

• MAX maximizes the result 

of the game tree

• MIN minimizes the result.

Tic-Tac-Toe Game Tree



The MiniMax Rule



Value of a State15



Minimax Values16



Minimax Algorithm

๏ Idea: Make the best move for MAX assuming that MIN always replies with the best move for 
MIN 

๏ Easily computed by a recursive process: 
• The backed-up value (i.e., state value) of each node in the tree is determined by the values 

of its children: 

• For a MAX node, the backed-up value is the maximum of the value of its children (i.e., the 
best for MAX) 

•  For a MIN node, the backed-up value is the minimum of the values of its children (i.e. the 
best for MIN)  

•
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The Minimax Procedure18

CIS 391 - Intro to AI 5

The Minimax Procedure
Until game is over:

1. Start with the current position as a MAX node.

2. Expand the game tree a fixed number of ply.

3. Apply the evaluation function to the leaf positions.

4. Calculate back-up values bottom-up.

5. Pick the move assigned to MAX at the root

6. Wait for MIN to respond



2-ply Example: Backing up values19



Minimax Implementation20



Properties of Minimax Algorithm

๏ Complete: Minimax algorithm is complete. It will definitely find a solution (if exist), in the 
finite search tree. 

๏ Optimal: Minimax algorithm is optimal if both opponents are playing optimally. 

๏ Time complexity: As it performs DFS for the game-tree, so the time complexity of Minimax 
algorithm is , where b is branching factor of the game-tree, and m is the maximum depth 
of the tree. 

๏ Space complexity: Space complexity of Mini-max algorithm is also similar to DFS which is 
O(bm).

O(bm)

21



What if MIN does not play optimally?

๏ Definition of optimal play for MAX assumes 
MIN plays optimally: 
• Maximizes worst-case outcome for MAX.  
• (Classic game theoretic strategy) 

๏ But if MIN does not play optimally, what 
will happen?
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What if MIN does not play optimally?

๏ MAX will do even better. 

๏ Consider a MIN node whose children are terminal 
nodes. If MIN plays suboptimally, then the value of 
the node is greater than or equal to the value it would 
have if MIN played optimally. Hence, the value of 
the MAX node that is the MIN node’s parent can 
only be increased.  

๏ This argument can be extended by a simple induction 
all the way to the root.  

๏ If the suboptimal play by MIN is predictable, then 
one can do better than a minimax strategy. For 
example, if MIN always falls for a certain kind of 
trap and loses, then setting the trap guarantees a win 
even if there is actually a devastating response for 
MIN.
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What if MIN does not play optimally?

๏ Is it always best to play the minimax 
optimal move when facing a suboptimal 
opponent?
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What if MIN does not play optimally?

๏ Is it always best to play the minimax 
optimal move when facing a suboptimal 
opponent? NO 

๏ Consider a situation where optimal play by 
both sides will lead to a draw, but there is one 
risky move for MAX that leads to a state in 
which there are 10 possible response moves 
by MIN that all seem reasonable, but 9 of 
them are a loss for MIN and one is a loss for 
MAX.  

๏ If MAX believes that MIN does not have 
sufficient computational power to discover the 
optimal move, MAX might want to try the 
risky move, on the grounds that a 9/10 chance 
of a win is better than a certain draw. 
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Comments on Minimax Search

๏ Performance will depend on 
• the quality of the static evaluation function (expert knowledge) 
• depth of search (computing power and search algorithm) 

๏ Differences from normal state space search 
• Looking to make one move only, despite deeper search 
• No cost on arcs – costs from backed-up static evaluation 
• MAX can’t be sure how MIN will respond to his moves 

๏ Minimax forms the basis for other game tree search algorithms.
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Alpha-Beta Pruning



Resource Limits

๏ Problem: In realistic games, cannot search to leaves!
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Game Tree Pruning29



Alpha-Beta Pruning

๏ A way to improve the performance of the Minimax Procedure 

๏ Basic idea: “If you have an idea which is surely bad, don’t take the time to see how truly 
awful it is” ~ Pat Winston
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Alpha-Beta Pruning

๏ During Minimax, keep track of two additional values: 
• α: MAX’s current lower bound on MAX’s outcome  
• β: MIN’s current upper bound on MIN’s outcome 

๏ MAX will never allow a move that could lead to a worse score (for MAX) than α 

๏ MIN will never allow a move that could lead to a better score (for MAX) than β 

๏ Therefore, stop evaluating a branch whenever: 
• When evaluating a MAX node: a value v ≥ β is backed-up  

— MIN will never select that MAX node 
• When evaluating a MIN node: a value v ≤ α is found  

— MAX will never select that MIN node
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Alpha-Beta Pruning

๏ Based on observation that for all viable paths utility value f(n) will be α <= f(n) <= β 

๏ Initially, α = - , β=  

๏ As the search tree is traversed, the possible utility value window shrinks as α increases, β 
decreases 

๏ Whenever the current ranges of alpha and beta no longer overlap, it is clear that the current 
node is a dead end

∞ ∞
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When to Prune

Prune whenever  α >= β. 

๏ Prune below a Max node when its  value becomes ≥ the  value of its ancestors. 

• — Max nodes update  based on children’s returned values. 
• — Idea: Player MIN at node above won’t pick that value anyway, he can force a worse value. 

๏ Prune below a Min node when its  value becomes ≤ the  value of its ancestors. 

• — Min nodes update  based on children’s returned values.  
• — Idea: Player MAX at node above won’t pick that value anyway; she can do better.

α β
α

β α
β
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Example

๏ Max player will start first move from node A where α= -∞ and β= +∞, these value of alpha and 
beta passed down from A to B, then B to D.
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Example

๏ At Node D, the value of α will be calculated as its turn for Max: max (2, 3) = 3 will be the value of α at 
node D and node value will also 3. Now algorithm backtrack to node B, where the value of β will change 
as this is a turn of Min: β= min (∞, 3) = 3, hence at node B, α= -∞ and β= 3. 

๏ In the next step, algorithm traverse the next successor of Node B which is node E, and the values of α= 
-∞, and β= 3 will also be passed.
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Example

๏ At node E, Max will take its turn: α= max (-∞, 5) = 5, hence at node E α= 5 and β= 3, where 
α>=β, so the right successor of E will be pruned, and algorithm will not traverse it, and the 
value at node E will be 5.
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๏ Next step, algorithm backtrack the tree, from node B to node A. At node A: α=max (-∞, 3)= 3, 
β= +∞; then pass to Node C. At node C, α=3 and β= +∞, then passed to node F. At node F: 
compare to left and right child, α remains 3. The node value of F will become 1.

Example37



๏ Node F returns the node value 1 to node C, at C α= 3 and β= +∞, here the value of beta will be 
changed, it will compare with 1 so min (∞, 1) = 1. Now at C, α=3 and β= 1, α>=β, so the next 
child of C which is G will be pruned. The algorithm will not compute the entire sub-tree G.

Example38



๏ C now returns the value of 1 to A. The best value for A is max(3, 1) = 3. Hence the optimal 
value for the maximizer is 3 for this example.

Example39



Alpha-Beta Implementation40



Move Ordering in Alpha-Beta pruning

๏ The effectiveness of alpha-beta pruning is highly dependent on the order in which each node is 
examined. 

๏ Worst ordering:  
• In some cases, alpha-beta pruning algorithm does not prune any of the leaves of the tree, and 

works exactly as minimax algorithm.  
• In this case, the best move occurs on the right side of the tree. The time complexity for such an 

order is . 

๏ Ideal ordering:  
• The ideal ordering for alpha-beta pruning occurs when best moves occur at the left side of the 

tree.  
• We apply DFS hence it first search left of the tree and go deep twice as minimax algorithm in 

the same amount of time. Complexity in ideal ordering is  (Best-Case Analysis of Alpha-
Beta Pruning).

O(bm)

O(bm
2 )
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Test Example…42
Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?

CIS 391 - Intro to AI 38



Test Example…43
Answer to Example

-which nodes can be pruned?

Answer:  NONE! Because the most favorable nodes for both are 
explored last (i.e., in the diagram, are on the right-hand side).

3 4 1 2 7 8 5 6

Max

Min

Max
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Test Example 2…44
Second Example
(the exact mirror image of the first 
example)

6 5 8 7 2 1 3 4

-which nodes can be pruned?
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Test Example 2…45
Answer to Second Example
(the exact mirror image of the first 
example) -which nodes can be pruned?

6 5 8 7 2 1 3 4

Min

Max

Max

Answer:  LOTS! Because the most favorable nodes for both are 
explored first (i.e., in the diagram, are on the left-hand side).
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Resource Limits

๏ Problem: In realistic games, cannot search to leaves! 

๏ Solution: Depth-limited search 
• Instead, search only to a limited depth in the tree 
• Replace terminal utilities with an evaluation function for 

non-terminal positions 

๏ Example: 
• Suppose we have 100 seconds, can explore 10K nodes / sec  
• So can check 1M nodes per move 

•  reaches about depth 8 – decent chess program 

๏ Guarantee of optimal play is gone 

๏ More plies makes a BIG difference 

๏ Use iterative deepening for an anytime algorithm

α-β
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Applications

๏ Deep Blue  
• Evaluate positions using features handcrafted by human grandmasters and carefully tuned 

weights 
• Combined with a high-performance alpha-beta search that expands a vast search tree using a 

large number of clever heuristics and domain-specific adaptations.  
• Uses a parallel array of 256 special chess-specific processors 
• Evaluates 200 billion moves every 3 minutes; 12-ply search depth 
• 8000 factor evaluation function tuned from hundreds of thousands of grandmaster games 
• Tends to play for tiny positional advantages. 

๏ Chinook 
• The World Man-Made Checkers Champion, developed at the University of Alberta. 
• Competed in human tournaments, earning the right to play for the human world 

championship, and defeated the best players in the world.

47



Monte-Carlo Tree Search



The Game of Go

๏ For quite a long time, a common opinion in academic world 
was that machine achieving human master performance 
level in the game of Go was far from realistic.  

๏ It was considered a ‘holy grail’ of AI – a milestone we were 
quite far away from reaching within upcoming decade.  

๏ Surprisingly, in march 2016 an algorithm invented by 
Google DeepMind called Alpha Go defeated Korean world 
champion in Go 4-1 proving fictional and real-life skeptics 
wrong.  

๏ Around a year after that, Alpha Go Zero – the next 
generation of Alpha Go Lee (the one beating Korean 
master) – was reported to destroy its predecessor 100-0, 
being very doubtfully reachable for humans.
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AlphaGo

๏ 2016: AlphaGO (created by DeepMind) defeats human champion. Uses Monte Carlo Tree 
Search, learned evaluation function.
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AlphaZero, MuZero, and More…52

MuZero: Mastering Go, chess, shogi and Atari without rules

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules


Alpha Go/Zero

๏ Alpha Go/Zero system is a mix of several methods assembled into one great engineering piece 
of work. The core components of the Alpha Go/Zero are: 
• Monte Carlo Tree Search (certain variant with PUCT function for tree traversal) 
• Residual Convolutional Neural Networks – policy and value network(s) used for game 

evaluation and move prior probability estimation 
• Reinforcement learning used for training the network(s) via self-plays 

๏ Here we will focus on Monte Carlo Tree Search only.
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Monte Carlo Tree Search

๏ Monte Carlo Tree Search was introduced by Rémi Coulom in 2006 as a building block 
of Crazy Stone – Go playing engine with an impressive performance. 

๏ From a helicopter view Monte Carlo Tree Search has one main purpose: given a game state to 
choose the most promising next move. 
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Monte Carlo Tree Search

1. Selection 
Start from root R and select successive child nodes until a leaf node L is reached. The root is the current 
game state and a leaf is any node that has a potential child from which no simulation (playout) has yet 
been initiated. 

2. Expansion 
Unless L ends the game decisively (e.g. win/loss/draw) for either player, create one (or more) child 
nodes and choose node C from one of them. Child nodes are any valid moves from the game position 
defined by L. 

3. Simulation 
Complete one random playout from node C. This step is sometimes also called playout or rollout. A 
playout may be as simple as choosing uniform random moves until the game is decided (for example in 
chess, the game is won, lost, or drawn). 

4. Backpropagation 
Use the result of the playout to update information in the nodes on the path from C to R.
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Monte Carlo Tree Search56



Choosing the Most Promising Move: Monte Carlo

๏ In Monte Carlo Tree Search algorithm, the most promising 
move is computed in a sightly different fashion.  

๏ As the name suggests (especially its monte-carlo component) – 
Monte Carlo Tree Search simulates the games many times and 
tries to predict the most promising move based on the simulation 
results. 

• Monte Carlo method:  
• A broad class of computational algorithms that rely on 

repeated random sampling to obtain numerical results.  
• The underlying concept is to use randomness to solve 

problems that might be deterministic in principle. 
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Monte Carlo method applied to 
approximating the value of π.



Simulation / Playout58



Fully expanded and visited nodes

๏ Node is considered visited if a playout has been started in that node – meaning it has been 
evaluated at least once.  

๏ If all children nodes of a node are visited node is considered fully expanded, otherwise – well 
– it is not fully expanded and further expansion is possible. 

๏ nodes chosen by rollout policy function during simulation are not considered visited.
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Backpropagation

๏ Once simulation for a freshly visited node (sometimes called a leaf) is finished, its result 
is ready to be propagated back up to the current game tree root node. The node where 
simulation started is marked visited. 

๏ For every node on the backpropagation path certain statistics are computed/updated
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Node’s Statistics

๏ Back-propagating updates the total simulation 
reward Q(v) and total number of visits N(v) 
for all nodes v on backpropagation path: 

• Q(v) – Total simulation reward, e.g., sum of 
simulation results that passed through 
considered node. 

• N(v) – Total number of visits, i.e., how 
many times a node has been on the 
backpropagation path 

๏ Nodes with high reward are good candidates to 
follow (exploitation) but those with low 
amount of visits may be interesting too 
(because they are not explored well)
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Example62



Game Tree Traversal: Upper Confidence Bound

๏ How do we get from a root node to the unvisited node to start a simulation? 

๏ Upper Confidence Bound applied to trees (UCT) is a function that lets us choose the next 
node among visited nodes to traverse through – the core function of Monte Carlo Tree Search
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ExplorationExploitation

Controls the trade-off 
between exploitation 
and exploration in 
MCTS



UCT in Alpha Go and Alpha Zero64



Terminating Monte Carlo Tree Search

๏ When do we actually end the MCTS procedure?  
• It depends on the context. If you build a game engine then your “thinking time” is probably 

limited, plus your computational capacity has its boundaries, too. Therefore the safest bet is to 
run MCTS routine as long as your resources let you. 

๏ The general idea of simulating moves into the future, observing the outcome, and using the 
outcome to determine which moves are good ones is one kind of reinforcement learning (we 
will cover in the future lectures).
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Search with Uncertainty



Stochastic Games

๏ What if we don’t know what the result of an action will be? E.g., 
• In solitaire, shuffle is unknown  

• In minesweeper, mine locations
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Worst Case vs. Average Case68



Expectimax Search

๏ Values should now reflect average-case (expectimax) outcomes, 
not worst-case (minimax) outcomes 

๏ Expectimax search: compute the average score under optimal 
play 
• Max nodes as in minimax search 
• Chance nodes are like min nodes but the outcome is uncertain  
• Calculate their expected utilities 
• I.e. take weighted average (expectation) of children 

๏ Later, we’ll learn how to formalize the underlying uncertain- 
result problems as Markov Decision Processes
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Reminder: Probabilities

๏ A random variable represents an event whose outcome is unknown  

๏ A probability distribution is an assignment of weights to outcomes 

๏ Example: Traffic on freeway 
• Random variable: T = whether there’s traffic 
• Outcomes: T in {none, light, heavy} 
• Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25 

๏ Some laws of probability (more later): 
• Probabilities are always non-negative 
• Probabilities over all possible outcomes sum to one 

๏ As we get more evidence, probabilities may change: 
• P(T=heavy) = 0.25, P(T=heavy | Hour=8am) = 0.60
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Reminder: Expectations

๏ The expected value of a function of a random variable is the average, weighted by the 
probability distribution over outcomes 

๏ Example: How long to get to the airport?
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Expectimax Pseudocode72



Expectimax Pseudocode73



Expectimax Pruning?74



Depth-Limited Expectimax75



Expectimax Search

๏ In expectimax search, we have a probabilistic model of how 
the opponent (or environment) will behave in any state 
• Model could be a simple uniform distribution (roll a die) 
• Model could be sophisticated and require a great deal of 

computation 
• We have a chance node for any outcome out of our control: 

opponent or environment 
• The model might say that adversarial actions are likely! 

๏ For now, assume each chance node magically comes along 
with probabilities that specify the distribution over its 
outcomes

76

Having a probabilistic belief about 
another agent’s action does not 
mean that the agent is flipping any 
coins!



The Dangers of Optimism and Pessimism77

Dangerous Optimism 
Assuming chance when the world is adversarial

Dangerous Pessimism 
Assuming the worst case when it’s not likely



Stochastic Single-Player: Pacman

๏ Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s 
score 

๏ Instead, they are now a part of the environment 

๏ Pacman has a belief (distribution) over how they will act 

๏ Quiz: Can we see minimax as a special case of expectimax? 

๏ Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-
ply minimax and taking the result 80% of the time, otherwise moving randomly?
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Expectimax for Pacman79



Stochastic Two-Player: Backgammon80

๏ The goal of the game is to move all one’s pieces 
off the board.  
• Black moves clockwise toward 25, and White 

moves counterclockwise toward 0.  
• A piece can move to any position unless 

multiple opponent pieces are there; if there is 
one opponent, it is captured and must start 
over.  

๏ In the position shown, Black has rolled 6–5 and 
must choose among four legal moves: (5–11,5–
10), (5–11,19–24), (5–10,10–16), and (5–11,11–
16), where the notation (5–11,11–16) means 
move one piece from position 5 to 11, and then 
move a piece from 11 to 16.



Example: Backgammon81

At this point Black knows 
what moves can be made, 
but does not know what 
White is going to roll and thus 
does not know what White’s 
legal moves will be. That 
means Black cannot 
construct a standard game 
tree of the sort we saw in 
chess and tic-tac-toe. A game 
tree in backgammon must 
include chance nodes in 
addition to MAX and MIN 
nodes. Chance nodes are 
shown as circles in Figure 




Mixed Layer Types

๏ Expectiminimax 
• Environment is an extra 

“random agent” player that 
moves after each min/max 
agent 

• Each node computes the 
appropriate combination of 
its children
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Multi-player Non-Zero-Sum Games

๏ What if the game is not zero-sum, or has 
multiple players? 

๏ Generalization of minimax: 
• Terminals have utility tuples 
• Node values are also utility tuples 
• Each player maximizes its own 

component 
• Can give rise to cooperation and 

competition dynamically…
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Utilities

๏ Utilities are functions from outcomes (states of the world) to real numbers that describe 
an agent’s preferences 

๏ Where do utilities come from? 
• In a game, may be simple (+1/-1) 
• Utilities summarize the agent’s goals 
• Theorem: any “rational” preferences can be summarized as a utility function 

๏ We hard-wire utilities and let behaviors emerge 
• Why don’t we let agents pick utilities? 
• Why don’t we prescribe behaviors?
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Maximum Expected Utilities

๏ Why should we average utilities?  Why not minimax? 

๏ Principle of maximum expected utility: 
• A rational agent should chose the action that 

maximizes its expected utility, given its knowledge
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What Utilities to Use?

๏ For worst-case minimax reasoning, terminal function scale doesn’t matter 
• We just want better states to have higher evaluations (get the ordering right) 
• We call this insensitivity to monotonic transformations 

๏ For average-case expectimax reasoning, we need magnitudes to be meaningful (we’ll talk more about 
utilities in the future)
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Summary

๏ In two-player, discrete, deterministic, turn-taking zero-sum games with perfect information, the minimax 
algorithm can select optimal moves by a depth-first enumeration of the game tree. 

๏ The alpha–beta search algorithm computes the same optimal move as minimax, but achieves much 
greater efficiency by eliminating subtrees that are provably irrelevant. 

๏ Usually, it is not feasible to consider the whole game tree (even with alpha–beta), so we need to cut the 
search off at some point and apply a heuristic evaluation function that estimates the utility of a state. 

๏ An alternative called Monte Carlo tree search (MCTS) evaluates states not by applying a heuristic 
function, but by playing out the game all the way to the end and using the rules of the game to see who 
won. Since the moves chosen during the playout may not have been optimal moves, the process is 
repeated multiple times and the evaluation is an average of the results. 

๏ Games of chance can be handled by expectiminimax, an extension to the minimax algorithm that 
evaluates a chance node by taking the average utility of all its children, weighted by the probability of 
each child.

87



Thanks! Q&A
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